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I. INTRODUCTION

Let L be a second order elliptic operator defined in a smooth domain
Q< R". That is

TEIR

(1.1) Lu = -Z%aij(x)%+2bi(x)§% + ¢(x)u
j i

where, for every £ « R" we have

2 2
(1.2a) Ag ) Sj gZaij(x)gisj < AOZ,EJ. s ¥Yx e,

e R

L

for certain positive constants xo s AO , Wwith

-—

(1.2b) 0 < Ao <Ay -

We may assume the coefficients aij(x), bs(x), c(x) e c®(2) and

(1.2¢) c(x) >0 . ‘A
Let N be a first order operator defined in Q , i.e. }.

14

(1.3) Mu = B, (x) 2L+ alx)u . |

3x1.
In this report we are concerned with the eigenvalue problem !

‘ ) A Q ...... - e - e B
(] 4a) N " " i—Accesséou Tor t(liiT/
TpTiz aRarl X

:
(1.4b) u=0 on AR nergomon 3 \
Vannaets e -

'~
-
>
[
1
1

and the related discrete eigenvalue problem

(1.5a) LU, =)

nYn NhUh in Q(h)

h

(1.5b) Up = 0 on 3q(h)

—
P
e




where Lh and Nh are finite-difference operators defined on a grid
region Q(h) with boundary 3Q(h) .

In the case where L and N are seif-adjoint, i.e.
(1.6) bi(x) =0, Bi(x) =0, i=1,2,...,n

and a(x) does not change sign in Q while Lh and Nh correspond
to positive definite matrices one can attack this problem via the appro-
priate variational principles (see Weinberger [12]).

In the general case if L, and Nh arise from a Galerkin approach

h
and one has general LZ(Q) convergence results one may apply the results
of Vainikko [10] and Osborn [ 7].

At first glance it would appear that one could somehow easily modify
the finite-difference set-up so as to be able to apply the finite-element
theory. This author was unable to do this.

The difficulty centers about the following points. Let

1

T=L'N, T, =1L

In order to apply the theory of [ 7] we require that

Thf +Tf ¥feX

where X 1is an appropriate Banach space, say LZ(Q) . But, the finite-
difference theory is not designed to operate on all of LZ(Q), only on
sufficiently smooth functions.

Moreover, if one attempts to extend the theory to all of LZ(Q) via

Lz projection or "smoothing", one finds that the eigenvalue problem be-




comes perturbed in a manner which is non-trivial when viewed from all of

LZ(Q) . On the other hand, a glance at the development of [7] shows

that all of the "real action" takes place in certain smooth, finite dimen-

This remark is the key to the develop-

sional subspaces; the eigenspaces.

ment given in this report.

“‘:EE;This work is motivated by the desire to extend the theory of iterative

" . ub
methods for the solution of the a]gebraic problems associated with L de-}\\l i

S O SN ORerak o, — "
ve]oped 1:’B83 to the non-sel'f-adjc adJo1nt case. See~£Q§— For this reason the

sub
operators %6' will approximate N in a relatively *weak’ manner.

In order to simplify the presentation we first consider a particular

b v S TP 522 5.

Pmodel* problem. Following that development we discuss the essential fea-

tures of that discussion.,/”

In section 2 we describelthe(basic model problem and some well-known

facts about this model problem.

(}n section 3 we develop the convergence theorems.

In section 4 we discuss the ideas in Pur convergence proofs and their

possible extension to more general problems. ‘f;\\\\\

v




2. THE MODEL PROBLEM

Let
(2.1) @2 {(x,y); 0<x, y<1}
and let
(2.2) Lu = =(u,bup ) +alxylu + b(x.y)uy

where a, b « C*(%) are nice functions. Let

(2.3) Nu = a(x,y)ux + B(x,y)uy + q(x,y)u

with o, 8, Qe C (%) . For every f ¢ LZ(Q) we let
f=u

be the solution of

(2.4a) Lu=Nf, in Q,

(2.4b) u=0, on 3.

Since N maps L,(a) into H_,(Q) and the resulting u is in

o
H1(9) we see that T is a compact map whose spectrum o(T) consists only

of eigenvalues and 0 . Thus apoint 2¢ ¢, 2#0,

of T only if there is a u ¢ Lz(ﬂ) which satisfies
(2.5) Tu=2u, ut0.

We assume that 0 1is not an eigenvalue of T .

-
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Let P be a fixed positive integer and set

1 >

h =5 X

' Let
(2.6a) Q(h) = {(xi’yj) = (ih,jh); 1<i,j<P}

be the set of interior mesh points while

(2.6b) (h) = {(xi,yj) = (ih,jh); i or j =0 or P+1}

is the set of boundary mesh points. A "grid vector" {Uij; 0<i,j<P+1}

is a function defined on the total set of mesh points

BEEASIRN

Qh) = Q(h) v (h) .

As usual, we define the discrete Laplace Operator by: for i < i,j <P

U, =2V, . +U. U, .,,-2U, ., +U, .
e %1, i, -1, ij+ i,j "i,j%1
} (2.7) [Ahu]i,j 3 + 5 3
: h h
Let
E = = r
E (2.8&) aij a(Xi,yi) s bij b(xi’yi) .

With this notation we now define the finite-difference operator Lh cor-

i responding to L . For 1 <1,j <P

] .= U . U, ..,~U, .
.. i#1,5  “i-1,j] i d+l Yi,j-1 ¥
(2.8) [Lhulij [Ahu]” + 3y h + bij 5h ) i
1
‘ Remark: While U 1{s defined on the entire mesh region, the values AhU
{ 1 and LhU are defined only on the interior mesh points, Q(h) .




We also define the usual difference operators

Uiy «=Us . §
2.9a v ul. .=_11’_J_.__1_’.J.,]< i <P, 0<1i<P : ’,4
(2.92) 7,01 a <isP o<

Us coq =Us - 3
(2.9b) [vyu]ij=#\1%lhl,oijip,1iigp. 1

Let U,V be grid vectors. We define an inner product

P P
2 —
2.10 V) = h u,.v.. .
) @0 =L LBt

Observe that this inner product involves only the interior mesh points, ;3

2{h) . In the usual way we define the semi-norm
2 _
(2.10b) Hully, = (U,u)

We note that this semi-norm is a norm for those grid vectors U which

vanish on the boundary, i.e.,
(2.11) U=0 on 30(h) .
We recall the following basic facts.
Lemma 2.1: Let U be a grid vector which satisfies (2.11). Then

(2.12) (-AhU,U) = (VXU,VXU) + (VyU,VyU) .

Proof: Apply summation by parts. See [1], [11].

Definition: Let f(x,y) ¢ C(%) . Then th is the grid vector which
interpolates at the mesh points. That is, [th] is the restriction of

f to Q(h);

(2.13) [Ohf]” = fi5 " f(xi.yj) .




;
b
s
!
2

Definition: Let f ¢ Cz(ﬁ) and let wz(f;h) be the modulus of continuity

of the second derivatives of f , i.e. Let ¢(x,y) be any second deriva-

or ¢=7Ff_ . Forall (x,y) e and

tiveof f, ¢=f_or ¢=F Xy

XX yy
(x',y') € @ with

[x-x"| <h, ly=y'l <h,
we have

(2.14) sup {felx,y) -o(x"ay )]s 0 = f,00 f,00 f } = wy(fsh) .

0f course, wz(f,h) -0 as h~+0.

Definition: Let L* be the formal adjoint of the operator L . That is

(2.15a) U= -(U ) - (au) - (bu)

XX yy y

Let L; be the finite-difference operator defined by

* 2441,3%01,5721-1,3% 1, | [P1,5+1%,301 04,51, 401
(2.18b)[L U1 = -[8,U]; 5 - [ - - o _

Lemma 2.2: Let U,V be grid vectors which vanish on 23R(h), i.e. both U

and V satisfy (2.11). Then
*
(2.16) (U,L V) = (L U.V) .

If U e 02(5) then there is a constant K > 0 such that

|




T

(2.17a) LthU = QhLU + 1

(2.17b) LﬁQhU = QhL*U + T*

where

(2.17¢) el * Tl < Kap(Uh)

Proof: The identity (2.16) follows from an elementary summation by parts.
The estimate (2.17c) follows from Taylor's theorem. Of course, if U « C4(§)

then the truncation error |E| + |E*| is of order he

Lemma 2.3: Let F be a grid vector and let

IFll,, = max {IF,-J-I; T<i,j< P} .
There are constants K >0, hy >0 such that, if

0 <h<hy

and U is the solution of

(2.18a) LhU =F in Q(h) ,
(2.18b) U=0 on 3Q(h),
then

(2.19) Hull, < KIFIl, -

Proof: This well-known result follows from the discrete maximum principle

and lemma 2.2. See [11].




Lemma 2.4: Let U be a grid vector which vanishes on 232(h). Then

(2.20) -(aU,U) < UL U) ] + lall,, Wl « W0l
+ lbll,, Hully = 19yl -
Proof: Direct Computation.

Before discussing the operators Nh we discuss the "prolongation”
of grid vectors U into functions U(x,y;h) defined on © .
Let the mesh region Q(h) be "triangulated". To be specific, imagine

that the diagonal lines
.Y:X'jh * j=-(P+]),—P,,.,,P,(P+])

have been drawn over the grid. Each square with vertices (xi,yj),
(Xi+]’yj)’ (Xi+1’yj+])’ (xi,yj+]) is considered as the union of two

triangles.

(X'i ’yj"']) o (X'H'] 9.Yj+])

/

')/ A(xi+] !.yj)

J

(xi ’y

With each grid vector U = {Uij} we associate a piecewise linear

function U(x,y;h) which is linear on each triangle and

U(xi’yjsh) = U1j .

—— - PR e e Py s e o T
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Let P(h) be the space of all such function and Po(h) be the sub-
space of P(h) which consists of those functions which vanish on 30 .

Throughout the remainder of this work we will make a complete identi-
fication between grid vectors U = {Uij} and these associated functions
U(x,y;h). This will avoid cumbersome notational difficulties.

Llet ( , Y be the LZ(Q) inner product, i.e. if f,g ¢ LZ(Q) ,

then

(2.21) (f,g) = I f(x,y)g(x,y)dxdy .

O

Lemma 2.5: Llet U,V ¢ Po(h) . Then
= 10
(y,v) = 54 {U,v) +
(2.22) lrﬁ 10, (v +V +V +/ )
‘ 24 TJ 'ij i+1’j i-1 sj 1’j+] isj']
he -
* ?E1.Zjuij(vi+1,j~1+V1-1,j+1) :
Furthermore
(2.23a) U,V = (U,V) + E1
where
(2.23b) Eqf < (0,03 (-8 0,1)%

Proof: The formula (2.22) is obtained by a direct integration. The

estimates (2.23a) and (2.23b) follow from (2.22) and lemma 2.1.




Lemma 2.6: Let U e P(h) . Let Sh be the triangle with vertices I[,J,K.

Then

2
. = h—
(2.24) HU(x,y,h)dxdy NURTRTA
S

h

In this notation I,J and K are symbols for pairs of indices (i,j).
Proof: Direct integration.

We now turn to a discussion of the operator Nh . We do not describe

and LY. Instead,

these operators as specifically as we described Lh h

we make the following weak consistency assumption.

0
Assumption N: Let N, be defined by: for 1<1,j<P

0 U, .- U, . . osaq =Y. o
- itl,J i-1,3 i,j#1 "i,3-1

+ Q(xi’yj)uij .

We assume that, for all grid vectors U,V which vanish on 3Q(h) ,

(2.25a) (U,N V) = (U,ﬁhv) tE,

where

(2.25b) |E,| < DRL(-8,U,U)- (~8,V,V)]?
+ DRZL(-8,0,0) + (-8,V,V)]

Lemma 2.7: Let U ¢ Po(h) . Then there is a constant Cl , depending on

flall .o [18Il» llall_, but not on h so that

T A TR T XV

{5

daliia




o o
¢ 5
(2.26b) (VN U T < Cq IV, (-8,050)%
Proof: Direct Computation.

Before proceeding to the convergence theorem of the next section, we
recall some basic facts.

If U e P.(h) then

of

(2.27) (-a,U,U) = ||un§
Hy (@) |

Moreover, we have the important

Lemma 2.8 (Rellich): Let h, > 0 and let U e Po(hn) satisfy

_ 2
(-t Upop) = g <k
H, (2)

0
Then there is a subsequence n' and a function u ¢ H](Q) such that

Proof: See [2].

£ ' LT crons N"f!{‘-’i"i"“"i

"_'f-‘l,{ S

A aerglg st
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3. THE CONVERGENCE THEOREMS

Lemma 3.1: Let ] < ¢ be a compact subset of the resolvent set of T .

Assume that
0¢7] .

For each z < | consider the problem

1

(3.1a) U - EN U=F, in @(h),

Ly h

(3.1b) U=0, on 3h) .

There are constants h] >0, K>0 with K independent of h , such
that: For 0 < h < h1, problem 3.1 has a unique solution

U, and

(3.2) 1o, < RIFIl, -

Moreover, for every u ¢ Cz(ﬁ) which vanishes on 3R, let V be the

grid vector which satisfies

(3.3a) LV - ‘EN

h v

Vo= Qllu-INul L dn ah)

(3.3b) V=0, on 3Q(h) .

Then

(Veu,V-u)> =0 as h-+0.

V(x,y;h) converges to u in Lz(n) .

el
1
i
i
K
- 4
3
3

e i

,’,
|
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|
§
r
|
|

Proof: It is only necessary to verify (3.2). Suppose (3.2) is false.
Then there are sequences z € 1, hn + 0 and grid vectors Fn such

that ‘
(3.4a) ||Fn||hn +0 as h, >0,

while the corresponding solutions [(3.1a), (3.1b], V> satisfy

(3.4b) l[vnHh =1,
n
|
Then {
!
1 _ .
(3.5a) Lh Vn - E_thn = fn , in Q(hn) ,
n n
(3.5b) Vn =0, on 8Q(hn) .
(3.5¢) ||Vn|lh =1.
n
Applying lemma 2.4 we have

(3.6) Ll V¥ < 10 F )]+ Hall 78y« 0l 17,y

+ E],,_t“vn’Nh,,v“” .

Using Assumption N and Lemma 2.7 we have

5 -
l(vn,Nthn)l < Cl('Ahnvn’vn) + ZDhn( Ahvn,vn)
Therefore

1
(3.7) -(Ahnvn,vn) < ||f-‘n||hn * K, (E+bhn)('Ahnvn’vn)

T RS A i e el
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where
- 2 rArY:
Ky = 10(llallZ + [Ib]|Z + T
- C]
C]=max{'!?|-,ZeZ}.
& 2D
D = max { TaT» 2 ¢ I} .
Thus, when
= ]
Ohy <3
we obtain
(3.8) (-Ahnvn,vn) <2(1+ Kz) .
Let Z. be a subsequence of the z, such that
Zo v Ce) .

Appiying Lemma 2.8 we see that there is a sub-subsequence n" and a func-
0

tion v € H, such that

1

0
(i) Vn" ~v in H](Q)
and

(i1) Vn“ +v in LZ(Q) .

For simplicity of notation we denote {hn"} by {hn} .
Let ¢ « C;(Q) and let

(3.9) o * th¢ .

. e g
- PR WP T WS —
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From (3.5a), (3.5b) we obtain

1 .
(@nthnvn) - zn (¢nithn) (‘Dn:fn) .

Thus, using Assumption N we see that
(LY o V) - (o gv)=(¢ g )
hn n’'n z, n*"h'n n’“n
where

flg I, =0 as n =
n hn

On letting n - » lemma 2.2 and lemma 2.5 yield
(3.10) (L*,v) - ]E(¢,Nv> =0 .

Thus, v 1is a weak solution of

(3.11a) v-thw=0, in a,

(3.11b) v=0, on 3.

But, then, v is a genuine solution of (3.11a), (3.11b) and ¢ « ] s
an eigenvalue of T (see [2]). With this contradiction we have proven
(3.2).

The remainder of the lemma follows from similar arguments.

Let u# 0 be an eigenvalue of T . Let
S = ker (u-T)?,

i.e., the kernel or nullspace of the linear map (u-T)® where «

is the ascent or rank of u (see [5]). S 1is the range of the linear




projection E given by

(3.12) E =5 I (z-T) Vdz
r

with T any circle in the resolvent set of T enclosing u in its in-
terior, but no other point of the spectrum. The linear projector E can

also be written in the form

(3.13a) Ey =

U~

(y,01) 0,

i=1

where {¢1., i=1,2,...a} 1is any basis for S and {¢’1!', i=1,2...a} 1is the

corresponding dual basis in
(3.13b) S* = ker (p-T*)* .

That is ®; ¢ S* and <q>i,¢3'> = 6‘.. . Here T* is determined by

i
(3.13c¢) (Tu,v) = (u,T*y)
That is,

(3.13d) T* = N*(L*)T .

Let J =T . Applying Lemma 3.1 we see that
-1 _1 1 -1
(3.14) (z-T,)"" = 'z'(Lh'i'Nh) Ly

is well-defined on T for 0 <h <h, . Let

. 1))
(3.15) Eh 2“1 J (z Th) dz .
T

T ey ot g oy
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Lemma 3.2: Let u # 0 be an eigenvalue of T . There is an h2 >0 such

that if 0 < h <h_ there is an eigenvalue W, of T, which lies in the

2
interior of T .

Proof: If the lemma is false, then

Eh =0.

Let ¢ ¢ S be an eigenfunction of T with eigenvalue p . It is not dif-

ficult to prove that ¢ ¢ Cz(ﬁ) . However, in order to see how the general
)

argument goes, we replace ¢ by a smooth H2 n H] approximant, which we

again call ¢ . Let

(3.]66) ¢h = Qh¢ s wh = Eh¢h
and let

we observe that
¥p(x,ysh) ~Eo # 0 .
We calculate

1

b= [ dz 1y! “Iny
e Vn e | 7 [Onlb-gh) Lo - (Ly-gh) L e
r

Since ¢ 1s smooth we may apply lemma 2.2. Thus




where ||T||_+ 0 . In fact, for each fixed z ¢ I let v(x,y;z) be the

solution of
(3.17a) (L-%N)v =l¢, v=0 on 3,
while V is the solution of
(3.17b) (Ly-SM W = QL. V=0 on aa(n) .
From Lemma 3.1 we see that
VIl + (-8,9.9)7 < K(lLel,, -

Thus, using Lemma 2.5 and Holder's inequality we see that there is a constant

K] such that
(3.]8) ”v”LZ(Q) i K'I ’ ”v”L](Q) < K] .
Thus
(3.19) u(x,y3h) - V(x,y;h) = 2—,];1— J 952— (vix,y;2) - V(x,y;z))dz .
T
Applying Lemma 3.1 we see that
2n
]
Vil <9 [ oo llvtesiz)-VE i)l ,

However, according to Lemma 3.1 the integrand goes to 0 for every z < T
and the estimates (3.18) allow us to apply the dominated convergence theorem.

Thus

V(x;yih) = Es # 0 .
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Corollary: Let S, denote the range of E, - Then, for 0 < h < h,

we have

dimS_>dimS =a .

h

Proof: We need only apply the above argument to each ¢i in the basis of
S , smoothed if necessary. The resulting grid vectors Eh0h¢i will be

linearly independent if h is small enough.

Lemma 3.3: dim S = dim Sh .

Proof: Let Hh # 0 and Vh be an eigen pair of Th . That is,

=1

Suppose My > % . Then, it follows from Lemma 3.1 that . is an eigenvalue
of T.

In fact, let Vh satisfy
r-1 _
r -
(uh-Th) Vh =0.

A modification of the argument of Lemma 3.1 shows that, after selection of

a subsequence if necessary, there are functions v,w e LZ(Q) such that

V. = v, wh +w# 0

h

and

(ﬁ—T)r']v =wi0

(5-T)'v = (§-T)w =0 .
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Thus, a basis for Sh converges to a set of linearly independent func-

tions in S . Therefore
Lim sup dim Sh <dimS =a.
Thus, the lemma follows from the corollary to Lemma 3.2.
We collect our results in the following

Theorem 3.1: Let u # 0 be an eigenvalue of T with algebraic multi-
plicity a . Let T be a circle about u which does not include any other
point of the spectrum of T either in its interior or on its boundary. Then

there is ah A, > 0 such that if 0<h <h

1
(i) there are no eigenvalues

1

of T, on T

Hh h
(ii) there are eigenvalues My, “2,h""“r,h of Th which Tie
inside T .
(i1i) Let My Moy e e sl be the algebraic multiplicities of 1 p
Mo poeeHp p respectively.
Then

Furthermore, the mapping

Iy = thhls

is one to one and onto from S to Sh . Similarly, let

Ca?

h -~ Els

h

- . - ’ Py h A I P P T e N L By
cdanaitn TREES 52X ¢ LA T TN TP S SR £ Y et
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Then J, s also one to one and onto from §h to S .

h
Once one has this result one can follow Kreiss [6], Osborn [7] or

de boor and Swartz [3] to obtain Theorem 3.2: Let

1
"aJZJJ,
Then there is a constant K such that
[B-u]| < K sup (T-Th)’
S
Specifically, we have
Let 9ss i=1,2,...a be a basis for S and ¢;,1 =1,2...a be a basis
for S* . Then there is a constant K such that
iu-ul < K Z C(T-T) )02
o=1

Proof: See the development in [3].

oW e -

IEDRIE IS SRRT ST
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4. THE GENERAL IDEA

While the discussion in section 3 is limited to the model problem
described in section 2, one can see the essential points and describe the
basic ideas which will enable one to discuss more general problems.

The basic tool is the relationship between the linear projectors E
given by (3.12) and Eh given by (3.15).

A Yook at the proof of Lemma 3.2 shows that one need only apply Eh
to "smooth" elements 9, - However, even when we apply Eh to a smooth
Py we must have results such as those given in Lemma 3.1 .

Thus it is worthwhile to study the argument in Lemma 3.1. Almost any
discussion of the operator Lh yields estimates such as those given in
Lemma 2.2 (consistency) and Lemma 2.3 (convergence in the smooth case).
However, the use of E and Eh requires estimates on the solutions Vh

of the equations

zL vV - NhV = f zZel.

h h’

We have essentially used estimates on L;] to obtain these estimates. The

basic facts are

FACT 1: If {Vh; 0< “f-"o} is the set of all "functions" in P(h) such

that
ILVplly < €5 0<h<hy,

then the {Vh} are sequentially compact.

LA . ',‘_;QL"":”M%“»‘*'*‘,“" ‘iiiw.t.\.m_ti;rf J~(~,‘~-‘: ’ -:f“,:.-v T e
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FACT 2: If fh, Vh e P(h) and
o]
(4.1a) ZLhVh - Nth = fh
2
(4.1b) fh*fe C
(4.1¢) Vh >V

then, in an appropriate sense
(4.2) zZLV - NV = f .

In the proof of Lemma 3.1 we first use these facts to establish (3.2).
Then we use these facts and (3.2) to prove the convergence of the solutions
of (3.3a), (3.3b).

Thus, in the more general case, i.e. general L, N and Q, one would
expect to prove analogous spectral convergence theorems if one can establish
these two facts. And, our discussion shows that this is the case. The proof
of these facts are, in general, not too difficult. We have chosen to use
"energy estimates” to establish FACT 1 and Weyl's lemma (weak solutions are
genuine solution) to establish FACT 2.

In any particular instance one has a variety of possible arguments which
lead to such conclusions. For example, in the case discussed in this report,
i.e. the model problem, one could use the estimates of A. Brandt [4] to es-
tablish FACT 1. In fact, in this case, one can use the Banach space ((Q)
rather than LZ(Q) and rely completely on the estimates of [4]. We choose
to use "energy estimates" because we feel that they are (i) weaker and (ii)

(generally) easier to obtain.

I . P » T o
Gl T i e L B R AR PP R N R




M
{
M

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(el

(9]

(1ol

25

REFERENCES

Aziz, A. K. and B. E. Hubbard: Bounds for the solution of the Sturm-
Liouville problem with applications to finite difference methods,

J. SIAM 12, 163-178 (1964).

Bers, L. F. John and M. Schechter: Partial Differential Equations,

interscience N.Y., 1964.

de boor, C. ard B. Swartz: Collocation Approximation to Eigenvalues

of an Ordinary Differential Equation: The Principle of the Thing.

Univ. of Wis. Math. Research Center Report 1937, (1979).

Brandt, A.: Estimates for difference quotients of solutions of Poisson
type difference equations, Math. Comp. 20, 473-400 (1966).

Kato, T.: Perturbation Theory for Linear Operators, Grundlehren der

Math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966.
Kreiss, H.0.: Difference Approximations for Boundary and Eigenvalue
Problems for Ordinary Differential Equations. Math. Comp. 26, 605-624
(1972).

Osborn, John, E.: Spectral Approximation for Compact Operators, Math.
Comp. 29, 712-725 (1975).

Parter, S. V. and M. Steuerwalt: Another Look at Iterative Methods for
Elliptic Difference Equations. Univ. of Wis. Computer Sciences Dept.
Report #358 (1979).

Parter, S. V. and M. Steuerwalt: Report in Preparation

Va?nikko, G. M.: Rapidity of Convergence of Approximation Methods in
the Eigenvalue Problem. Z.Vy&isl. Mat.i Mat. Fiz 7, 977-987 (1967) =
U.S.S.R. Comput. Math. and Math. Phys. 7 18-32 (1967).

T A N e e NN AR - [ SO
e ) .




b 4

(1]

12]

mation, Regional Conference Series in Applied Mathematics, No. 15,

26 ;j
|
Varga, R. S.: Matrix Iterative Analysis, Prentice-Hall, Englewood }.
Cliffs, N.J. (1962).
Weinberger, Hans F.: Variational Methods for Eigenvalue Approxi- ‘

published by SIAM, Philadelphia, Penn. 1974.

T . et a e Gl DT T
- 4?'1’”%&#“%@1@‘%‘ awe ;> L e Al g 5.




